Skip to main content

Java

Here is an example of the way that the ? is employed:
ratio = denom == 0 ? 0 : num / denom;
When Java evaluates this assignment expression, it first looks at the expression to the left of
the question mark. If denom equals zero, then the expression between the question mark
and the colon is evaluated and used as the value of the entire ? expression. If denom does
not equal zero, then the expression after the colon is evaluated and used for the value of the
entire ? expression. The result produced by the ? operator is then assigned to ratio.

The switch statement works like this: The value of the expression is compared with each of
the values in the case statements. If a match is found, the code sequence following that case
statement is executed. If none of the constants matches the value of the expression, then the
default statement is executed. However, the default statement is optional. If no case matches
and no default is present, then no further action is taken.
The break statement is used inside the switch to terminate a statement sequence. When a
break statement is encountered, execution branches to the first line of code that follows the
entire switch statement. This has the effect of “jumping out” of the switch.

class MissingBreak {
public static void main(String args[]) {
for(int i=0; i<12; i++)
switch(i) {
case 0:
case 1:
case 2:
case 3:
case 4:
System.out.println("i is less than 5");
break;
case 5:
case 6:
case 7:
case 8:
case 9:
System.out.println("i is less than 10");
break;
default:
System.out.println("i is 10 or more");
}
}
}

switch(count) {
case 1:
switch(target) { // nested switch
case 0:
System.out.println("target is zero");
break;
case 1: // no conflicts with outer switch
System.out.println("target is one");
break;
}
break;


Comments

Popular posts from this blog

Terraform

Terraform is a tool for building, changing, and versioning infrastructure safely and efficiently. Terraform can manage existing and popular service providers as well as custom in-house solutions. Configuration files describe to Terraform the components needed to run a single application or your entire datacenter. Terraform generates an execution plan describing what it will do to reach the desired state, and then executes it to build the described infrastructure. As the configuration changes, Terraform is able to determine what changed and create incremental execution plans which can be applied. The infrastructure Terraform can manage includes low-level components such as compute instances, storage, and networking, as well as high-level components such as DNS entries, SaaS features, etc. The key features of Terraform are: Infrastructure as Code : Infrastructure is described using a high-level configuration syntax. This allows a blueprint of your datacenter to be versioned and...

Salt stack issues

The function “state.apply” is running as PID Restart salt-minion with command:  service salt-minion restart No matching sls found for ‘init’ in env ‘base’ Add top.sls file in the directory where your main sls file is present. Create the file as follows: 1 2 3 base: 'web*' : - apache If the sls is present in a subdirectory elasticsearch/init.sls then write the top.sls as: 1 2 3 base: '*' : - elasticsearch.init How to execute saltstack-formulas create file  /srv/pillar/top.sls  with content: base : ' * ' : - salt create file  /srv/pillar/salt.sls  with content: salt : master : worker_threads : 2 fileserver_backend : - roots - git gitfs_remotes : - git://github.com/saltstack-formulas/epel-formula.git - git://github.com/saltstack-formulas/git-formula.git - git://github.com/saltstack-formulas/nano-formula.git - git://github.com/saltstack-f...

Helm: Installation and Configuration

PREREQUISITES You must have Kubernetes installed. We recommend version 1.4.1 or later. You should also have a local configured copy of  kubectl . Helm will figure out where to install Tiller by reading your Kubernetes configuration file (usually  $HOME/.kube/config ). This is the same file that  kubectl  uses. To find out which cluster Tiller would install to, you can run  kubectl config current-context or  kubectl cluster-info . $ kubectl config current-context my-cluster INSTALL HELM Download a binary release of the Helm client. You can use tools like  homebrew , or look at  the official releases page . For more details, or for other options, see  the installation guide . INITIALIZE HELM AND INSTALL TILLER Once you have Helm ready, you can initialize the local CLI and also install Tiller into your Kubernetes cluster in one step: $ helm init This will install Tiller into the Kubernetes cluster you saw with  kubectl config current-context . TIP:  Want to install into a different cl...